Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Yong-Qin Wei, Zhang-Feng Zhou, Bo-Tao Zhuang, Ke-Chen Wu,* Cai-Ping Liu and Ming-Xi Zhang

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian 350002, People's Republic of China

Correspondence e-mail: wkc@ms.fjirsm.ac.cn

Key indicators

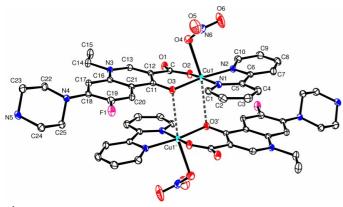
Single-crystal X-ray study T = 130 KMean $\sigma(C-C) = 0.003 \text{ Å}$ R factor = 0.034 wR factor = 0.080Data-to-parameter ratio = 11.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The mixed-ligand copper(II) complex (2,2'-bipyridine)-[1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(piperazin-4-ium-1-yl)quinoline-3-carboxylato]nitratocopper(II) nitrate dihydrate

The drug norfloxacin and ligand 2,2'-bipyridine coordinate to copper(II) yielding a mixed-ligand complex, [Cu($C_{16}H_{18}F-N_3O_3$)(NO_3)($C_{10}H_8N_2$)](NO_3)·2 H_2O or [Cu(H-Norf)(NO_3)-(bpy)](NO_3)·2 H_2O . The Cu^{II} atom has a five-coordinate environment with square-based pyramidal geometry, which involves two N atoms from the 2,2'-bipyridine ligand, two O atoms from the norfloxacinate ligand and one nitrate O atom. Weak interactions between O and Cu result in a centrosymmetric dimer.

Received 9 November 2004 Accepted 1 December 2004 Online 11 December 2004


Comment

Norfloxacin [H-Norf, 1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)quinoline-3-carboxylic acid)], serving as a fluoro-quinolone antimicrobial agent, is widely used as an anti-bacterial drug. Treatment with this drug leads to double-stranded DNA breaks and cell death (Froelich-Ammon & Osheroff, 1995; Shea & Hiasa, 2000), which is thought to take place through the formation of intermediate copper or iron complexes (Mendoza-Diaz *et al.*, 1993). However, reports of the crystal structures of norfloxacin directly chelated to metal ions are rare (Chen *et al.*, 2001, 2000). As an extension of our research on the coordination behavior of norfloxacin with metal ions, we have synthesized a new mixed-ligand complex, [Cu(bpy)(H-Norf)(NO₃)](NO₃)·2H₂O. We report here the preparation and crystal structure of the title complex, (I).

$$\begin{array}{c} & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

In the mixed-ligand complex, copper(II) is five-coordinate, with two N atoms from bpy, two O atoms from H-Norf and one O atom from the NO₃⁻ ion (Table 1), leading to a square-based pyramid. H-Norf chelates to copper(II) by using O2 and O3 to form a hexagonal ring structure, which is similar to that of the mixed-ligand complex of copper(I), [Cu(PPh₃)₂(H-Norf)](ClO₄) (Chen *et al.*, 2001). Atoms Cu, O2, O3, N1 and

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1ORTEP-3 (Farrugia, 1997) drawing of the dimer cation of the title complex, with displacement ellipsoids at the 50% probability level. H atoms have been omitted for clarity. Primed atoms are related to their umpromed equivalents by inversion symmetry.

N2 constitute a nearly square plane, whereas atom O4 from the NO_3^- ion is located at the apex of the pyramid and is weakly bonded to the Cu atom. The title complex with square-based pyramidal geometry is similar to the copper(II) complex $[Cu_2(cfc)_2(bpy)_2(pip)] \cdot 6H_2O$ reported by Wang *et al.* (2003). An important feature of the crystal structure is the weak attraction between Cu and O from H-Norf $[O3'\cdots Cu = 2.8723 (15) \text{ Å}]$, which results in the formation of a dimer (Fig. 1). The occurrence of a centrosymmetric dimer connected by such a long $O\cdots Cu$ distance is rather rare (Zang *et al.*, 1990). The H atoms of the water molecules and of the amine group build up an intricate hydrogen-bond network with O and N atoms (Table 2)

Experimental

Norfloxacin (0.5 mmol) was dissolved in H_2O (25 ml) and the pH value of this solution was adjusted to 6 with CH₃ONa. 2,2′-Bipyridine(0.5 mmol) was added and the solution was heated to 343 K. $Cu(NO_3)_2\cdot 3H_2O(0.5$ mmol) was then added and the solution was stirred for 1 h. Crystals were obtained by cooling the solution, after a few days.

Crystal data

· ·	
[Cu(C ₁₆ H ₁₈ FN ₃ O ₃)(NO ₃)-	$D_x = 1.668 \text{ Mg m}^{-3}$
$(C_{10}H_8N_2)](NO_3)\cdot 2H_2O$	Mo $K\alpha$ radiation
$M_r = 699.12$	Cell parameters from 6954
Monoclinic, $P2_1/n$	reflections
a = 13.9080 (8) Å	$\theta = 1.5 - 25.0^{\circ}$
b = 13.8441 (8) Å	$\mu = 0.87 \text{ mm}^{-1}$
c = 14.4835 (9) Å	T = 130 K
$\beta = 93.173 \ (3)^{\circ}$	Prism, blue
$V = 2784.4 (3) \text{ Å}^3$	$0.32 \times 0.20 \times 0.15 \text{ mm}$
Z=4	

Data collection

Rigaku Mercury CCD	4902 independent reflections
diffractometer	4561 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.027$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.0^{\circ}$
(Blessing, 1995)	$h = -16 \rightarrow 15$
$T_{\min} = 0.770, T_{\max} = 0.852$	$k = -16 \rightarrow 16$
17 478 measured reflections	$l = -16 \rightarrow 17$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0385P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.034$	+ 2.0954P]
$wR(F^2) = 0.081$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.09	$(\Delta/\sigma)_{\text{max}} = 0.001$
4902 reflections	$\Delta \rho_{\text{max}} = 0.44 \text{ e Å}^{-3}$
428 parameters	$\Delta \rho_{\min} = -0.29 \text{ e Å}^{-3}$
H atoms treated by a mixture of	
independent and constrained	
refinement	

Table 1 Selected geometric parameters (Å, °).

Cu-O2	1.9217 (15)	Cu-N1	1.9983 (18)
Cu-O3	1.9289 (14)	Cu-O4	2.3760 (16)
Cu-N2	1.9967 (17)		
O2-Cu-O3	93.45 (6)	N2-Cu-N1	81.16 (7)
O2-Cu-N2	92.17 (7)	O2-Cu-O4	89.69 (6)
O3-Cu-N2	171.98 (7)	O3-Cu-O4	89.45 (6)
O2-Cu-N1	170.82 (6)	N2-Cu-O4	96.31 (6)
O3-Cu-N1	92.60 (6)	N1-Cu-O4	97.27 (6)

Table 2
Hydrogen-bond geometry (Å, °).

	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathbf{H}\cdot\cdot\cdot A$
O10-H3···O4	0.857 (17)	2.02 (2)	2.843 (3)	161 (3)
O10-H3···O6	0.857 (17)	2.49 (2)	3.167 (4)	137 (3)
O10-H3···N6	0.857 (17)	2.57 (2)	3.371 (3)	157 (3)
O10-H4···O9	0.847 (17)	2.03 (2)	2.829 (3)	156 (3)
$O10-H4\cdots O8$	0.847 (17)	2.65 (2)	3.345 (3)	140 (3)
$O10-H4\cdots N7$	0.847 (17)	2.700 (19)	3.517 (3)	163 (3)
$O11-H1\cdots O5^{i}$	0.848 (17)	1.99(2)	2.795 (3)	157 (3)
$O11-H2\cdots O8^{ii}$	0.858 (17)	2.08 (2)	2.908 (3)	164 (3)
$O11-H2\cdots O7^{ii}$	0.858 (17)	2.40(2)	3.103 (3)	139 (3)
$O11-H2\cdots N7^{ii}$	0.858 (17)	2.574 (18)	3.417 (3)	168 (3)
$N5-H5A\cdots O1^{iii}$	0.90	1.79	2.686 (2)	176
$N5-H5B\cdots O10^{i}$	0.90	2.07	2.850 (3)	144

Symmetry codes: (i) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $z + \frac{1}{2}$; (ii) -x + 1, -y + 1, -z; (iii) z - 1, z = 0.

All H atoms, except for the water H atoms, were placed in calculated positions and included in the final cycles of refinement in the riding-model approximation, with N—H distances of 0.90 Å, and C—H distances of 0.93 (aromatic H atoms), 0.97 (methylene groups) and 0.96 Å (methyl group), and with $U_{\rm iso}({\rm H})=1.2 U_{\rm eq}({\rm C,N})$ [or $1.5 U_{\rm eq}({\rm C})$]. The water H atoms were located in Fourier syntheses, but their positional and displacement parameters were refined with O—H distance restraints of 0.85 Å and H···H restraints of 1.39 Å. $U_{\rm iso}({\rm H})$ values for the water H atoms were set equal to $1.5 U_{\rm eq}({\rm O})$.

Data collection: CrystalClear (Rigaku/MSC, 2004); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

We gratefully acknowledge the financial support of the Natural Science Foundation of China (grant Nos. 20173064 and 90203017).

metal-organic papers

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.

Chen, Z.-F., Li, B.-Q., Xie, Y.-R., Xiong, R.-G., You, X.-Z. & Feng, X.-L. (2001). *Inorg. Chem. Commun.* 4, 346–349.

Chen, Z.-F., Xiong, R.-G., Zuo, J.-L., Guo, Z., You, X.-Z. & Fun, H.-K. (2000). J. Chem. Soc. Dalton Trans. pp. 4013–4014.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Froelich-Ammon, S. J. & Osheroff, N. (1995). J. Biol. Chem. 270, 21429-21432.

Mendoza-Diaz, G., Martinez-Aguilera, L. M. R., Moreno-Esparza, R., Pannell, K. H. & Cervantes-Lee, F. (1993). *J. Inorg. Biochem.* **50**, 65–78.

Rigaku/MSC (2004). *CrystalClear*. Version 1.3.6. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX77381-5209, USA.

Shea, M. E. & Hiasa, H. (2000). J. Biol. Chem. 275, 14649-14658.

Sheldrick, G. M. (1997). SHELXLS97 and SHELXL97. University of Göttingen, Germany.

Wang, G.-P., Zhu, L.-G. & Yu, Q.-S. (2003). Chin. J. Inorg. Chem. 19, 179–182.
Zang, Y., Yin, Z.-F., Wang, G.-X., Zeng, C., Dai, A.-B. & Zhou, Z.-Y. (1990).
Inorg. Chem. 29, 560–563.